首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9750篇
  免费   1002篇
  国内免费   695篇
电工技术   310篇
技术理论   8篇
综合类   616篇
化学工业   1690篇
金属工艺   326篇
机械仪表   211篇
建筑科学   810篇
矿业工程   379篇
能源动力   759篇
轻工业   332篇
水利工程   810篇
石油天然气   179篇
武器工业   28篇
无线电   1568篇
一般工业技术   1737篇
冶金工业   399篇
原子能技术   486篇
自动化技术   799篇
  2024年   11篇
  2023年   176篇
  2022年   210篇
  2021年   409篇
  2020年   351篇
  2019年   313篇
  2018年   286篇
  2017年   389篇
  2016年   407篇
  2015年   341篇
  2014年   612篇
  2013年   816篇
  2012年   608篇
  2011年   719篇
  2010年   566篇
  2009年   602篇
  2008年   545篇
  2007年   560篇
  2006年   517篇
  2005年   417篇
  2004年   404篇
  2003年   325篇
  2002年   310篇
  2001年   239篇
  2000年   168篇
  1999年   120篇
  1998年   117篇
  1997年   117篇
  1996年   92篇
  1995年   94篇
  1994年   97篇
  1993年   79篇
  1992年   67篇
  1991年   47篇
  1990年   36篇
  1989年   67篇
  1988年   41篇
  1987年   25篇
  1986年   25篇
  1985年   25篇
  1984年   17篇
  1983年   15篇
  1982年   17篇
  1981年   19篇
  1980年   9篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1959年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
软岩与水相互作用研究综述   总被引:1,自引:0,他引:1  
软岩是一类松散、破碎、软弱及风化膨胀性的强度较低的岩石,在水环境作用下软岩易产生大变形失稳破坏。大多数岩土工程事故都涉及到软岩与水的相互作用,研究软岩与水相互作用对于分析某些由软岩失稳引起的工程事故具有重要的理论和现实意义。针对软岩与水相互作用这一问题,从软岩与水相互作用的分类、软岩吸水特性的影响因素及其软岩吸水失稳机理等方面,对国内外具有代表性的研究成果进行了梳理。结果表明:软岩与水相互作用可分为力学作用、物理作用和化学作用。在各种影响软岩吸水特性的因素中,主要因素是黏土矿物的含量和种类、孔隙结构,其他影响因素有水压变化、软岩的干湿循环次数、软岩的块体尺度(尺度效应)和吸水时间等。软岩吸水失稳的根本原因是吸水后黏土矿物微观结构发生变化,而是否含蒙脱石等吸水性极强的黏土矿物并非直接原因;后者只是对软岩吸水过程起到促进作用。  相似文献   
62.
采用微波加热合成结合放电等离子体烧结制备了铁-镍双掺杂方钴矿Co_(3.8-x)Fe_xNi_(0.2)Sb_(12) (x=0.05, 0.10, 0.15, 0.20)块体材料,并对其物相组成、晶粒尺寸、元素分布、热电性能等进行了系统研究。X射线衍射分析表明,样品X射线衍射峰与单相CoSb_3相符;场发射扫描电镜分析表明,样品晶粒尺寸为1~3μm、平均尺寸为1~2μm,各元素均匀分布;电性能分析表明,Ni/Fe双掺杂对电输运性能有进一步改善,最高功率因子为2.667×10~3μW·(m·K~2)~(-1);热性能分析表明,Fe掺杂对晶格热导率影响较小,晶格热导率与晶粒尺寸有关,主要热输运机制为晶界散射,Co_(3.65)Fe_(0.15)Ni_(0.2)Sb_(12)的最小晶格热导率为2.8 W·(m·K)~(-1)。Co_(3.7)Fe_(0.1)Ni_(0.2)Sb_(12)在773 K获得最大热电优值0.50,显著高于传统方法制备的Ni/Fe单掺杂或者双掺杂样品。  相似文献   
63.
A general model is proposed in order to describe the growth of a deposit by heterogeneous reactions. The hydrodynamics in the fluid is described by a multicomponent transport model for ionic species diluted in a solvent and heat transfer is taken into account in both liquid and solid domains. The boundary condition at the interface where the reaction takes place is described thoroughly. It involves the reaction kinetics and gives access to the velocity of the interface, ie, the mass rate of the solid deposit. The model is then applied to the case of barite crystallization in a heat exchanger. The liquid phase is therefore composed of two ionic species Ba2+ and SO42− diluted in water. The solid phase is modelled as a homogeneous barite deposit. The fully dynamic CFD simulation of the model is made using Comsol Multiphysics, in a cylindrical pipe. The solid growth is analyzed over time and space in terms of the relevant variables of the model.  相似文献   
64.
张行  庞丽萍  王莹 《化工学报》2020,71(z1):166-171
以某型运输机蒸发循环制冷系统用冷凝器为研究对象,分析了运输机与直升机、小型通航飞机蒸发循环制冷系统工作环境的区别,应用Star CCM+软件进行了仿真建模,通过对冷凝器风道的流体仿真分析,阐述了飞行状态下引起蒸发循环制冷系统压力故障的原因,在此基础上提出了冷凝器风道优化方案,并应用流体仿真分析的方法,验证了优化方案的有效性,最后在该运输机上进行了试飞验证。  相似文献   
65.
The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.  相似文献   
66.
Alkaline anion exchange membrane fuel cells (AEMFCs) are attracting more and more attention due to the advantages of using non-platinum-group (NPG) metal catalysts and less expensive metal hardware at the high pH conditions. However, the studies of electrodes with the non-precious metal are still less and the performance of the AEMFC operated with the NPG metal catalysts need to improve. In this work, based on AEMFCs operated with the commercial non-precious metal ORR catalysts (Acta 4020), a two dimensional, two-phase flow and steady-state agglomerates model is developed, and the effects of operational conditions of the relative humidity and the structure of the catalyst layer on fuel cell performance are numerically studied and analyzed. The results demonstrate that the relative humidity directly impacts the water distribution and transport in the MEA, and the low relative humidity in the cathode can increase the water back diffusion from the anode to the cathode and improve the fuel cell performance. An increase in the catalyst loading has been found to have a positive effects on the fuel cell performance, but the improvement is limited when the catalyst loading increases to a certain value. In addition, the increase in the mass ratio of catalyst to ionomer results in a decrease in the thickness of the ionomer film, but the excessive mass ratio of the catalyst to the ionomer also leads to a decrease in ionic conductivity, thereby deteriorating the performance of fuel cell. At last, operating with the optimized conditions from the model, the AEMFC realized a good fuel cell performance, and the peak power density reached 566 mW cm−2 and 326 mW cm−2 for H2/O2 and H2/Air (CO2-free) at 60 °C, respectively, and the results are higher than those reported in references.  相似文献   
67.
In this study, the internal transport phenomena and mechanism inside an air-cooled proton exchange membrane fuel cell (PEMFC) are investigated. It helps to understand the factors that affect the performance of an air-cooled PEMFC and optimize the design of Membrane Electrode Assembly (MEA) and the flow field. This series article contains two parts. In this paper, i.e., Part Ⅰ of this series, a three-dimensional, two-phase flow, non-isothermal, steady-state Computational Fluid Dynamics (CFD) model is established to investigate the liquid water generation mechanism and the species distributions inside an air-cooled PEMFC single cell with a Base Case flow field design. Dry hydrogen and ambient air (the relative humidity and the stoichiometry are 60% and 150 separately) are considered for the simulation and validation. It is found that the liquid water appears mostly inside the cathode electrode underneath the cathode rib. Inside the anode gas diffusion layer (GDL), the mass fraction of H2 underneath the cathode ribs is lower than that underneath the cathode channels, while the mass fraction of H2O shows the opposite. The distributions of O2 mass fraction and H2O mass fraction inside the cathode GDL have the same trend as those of H2 mass fraction and H2O mass fraction inside the anode GDL. The membrane water content is periodically distributed from channel to channel and its value underneath the cathode rib is much larger than that underneath the cathode channel. The current density distribution is affected by the distribution of water content, i.e., the part underneath the cathode rib shows a larger current density than that underneath the cathode channel.  相似文献   
68.
To increase proton conductivity of chitosan (CS) based polymer electrolyte membranes, a novel nanofiller-solid superacide SO42--TiO2 (STi) coated carbon nanotubes (STi@CNTs) are introduced into CS matrix to fabricate membranes for polymer electrolyte membrane fuel cells (PEMFCs). Owing to the STi coating, the dispersion ability of CNTs and interfacial bonding are obviously improved, hence, CNTs can more fully play their reinforcing role, which makes the CS/STi@CNTs composite membranes exhibit better mechanical properties than that of pure CS membrane. More importantly, STi possesses excellent proton transport ability and may create facile proton transport channels in the membranes with the help of high aspect ratio of CNTs. Particularly, the CS/STi@CNTs-1 membrane (1 wt% STi@CNTs loading) obtains the highest proton conductivity of 4.2 × 10−2 S cm–1 at 80 °C, enhancing by 80% when compared with that of pure CS membrane. In addition, the STi@CNTs also confer the composite membranes low methanol crossover and outstanding cell performance. The maximum power density of the CS/STi@CNTs-1 membrane is 60.7 mW cm−2 (5 M methanol concentration, 70 °C), while pure CS membrane produces the peak power density of only 39.8 mW cm−2.  相似文献   
69.
In this work, a cascade structure among ZnSe, carbon membrane and TiO2 NTAs was constructed precisely. This carbon membrane bridged ZnSe and TiO2 composite exhibits excellent H2 evolution activity, the H2 evolution rate of ZnSe/C/TiO2 NTAs (866.76 μmol/cm2) is about 6.95 times higher than that of pure TiO2 NTAs (124.64 μmol/cm2) after 200 min irradiation. The introduction of carbon membrane can greatly facilitate the electron transfer from ZnSe to TiO2, ZnSe/C/TiO2 ternary composite exhibits the highest transient photocurrent density (1.05 mA/cm2) and the lowest impedance (677.6 Ω) among all the samples. Besides, the contact between TiO2 and electrolyte is improved after introducing carbon membrane, therefore C/TiO2 NTAs shows more positive flat band potential of (1.86 V) compared with TiO2 NTAs (0.50 V). It is also found that pure carbon powder can achieve H2 production under visible light irradiation, its sensitization effect can further improve photocurrent density of the composite under 500 nm light radiation, the electrons produced in carbon film can inject into TiO2, and holes from TiO2 can quickly transfer to carbon film, leading to excellent H2 evolution efficiency.  相似文献   
70.
Water purification remains a challenge across sectors worldwide, especially the efficient removal of specific (toxic or valuable) dissolved ions at low salinity. In this article, shock electrodialysis (SED) is shown for the first time to have this capability, by demonstrating continuous separation of magnesium ions from aqueous mixtures of NaCl and MgCl2. By systematically measuring the composition of all input and output streams, the mechanisms that drive selectivity, current efficiency, and desalination are revealed, as well as strategies to improve performance. For solutions initially rich in sodium, highly selective (> 98%) continuous removal of magnesium can be achieved with only moderate (50–70%) total salt removal. This remarkable selectivity is associated with super-diffusive ion transport, mediated by charged double layers in a porous glass frit, behind a steady deionization shockwave in cross flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号